

Jog experiments to measure *AE radial eigenfunctions (and other modes)

College W&M
Colorado Sch Mines

Columbia U CompX

General Atomics

INEL

Johns Hopkins U

LANL LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

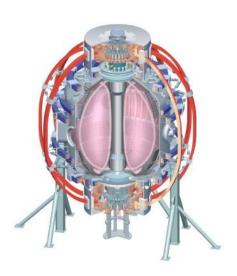
UCSD

U Colorado

U Illinois

U Maryland

U Rochester


U Washington

U Wisconsin

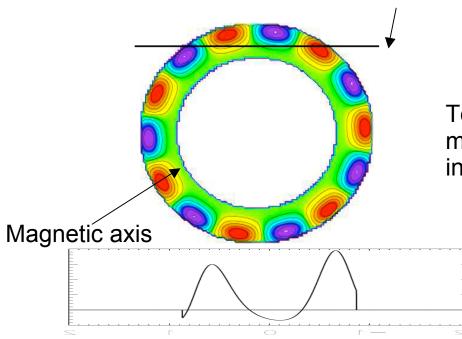
D. A. Gates, PPPL

E. Fredrickson, N. Gorelenkov, N. Crocker, K.C. Lee

FY 2010 NSTX Research Forum Dec. 1-3, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U Niigata U **U** Tokyo **JAEA** Hebrew U Ioffe Inst **RRC Kurchatov Inst TRINITI KBSI** KAIST **POSTECH ASIPP** ENEA. Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

Jog technique successfully used on numerous experiments to improve spatial resolution of measurements


- Particularly important on NSTX with few localized measurements of radial eigenfunctions
- Not utilized much to date because of required development time
- Fairly straight forward to add jogs to rtEFIT based control
- Need only optimize settling time for control
- Technique can be used to good effect for any steady mode, not just *AE modes
 - Cross-cutting development?

Mode identification key to analysis of fast-ion effects

Using the CAE mode profile above, a line integral was performed to determine the amplitude of the CAE. The mode is assumed to vary toroidally as $cos(n\theta)$.

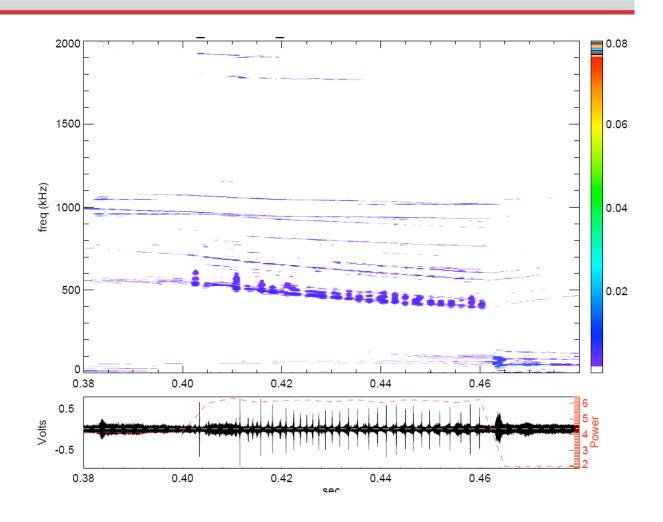
High k line of sight

Mode amplitude along sightline

Integrating an MHD mode with amplitude "A", and n=8 gives

$$\int \widetilde{n}_{norm} \, dl = 0.33 A$$

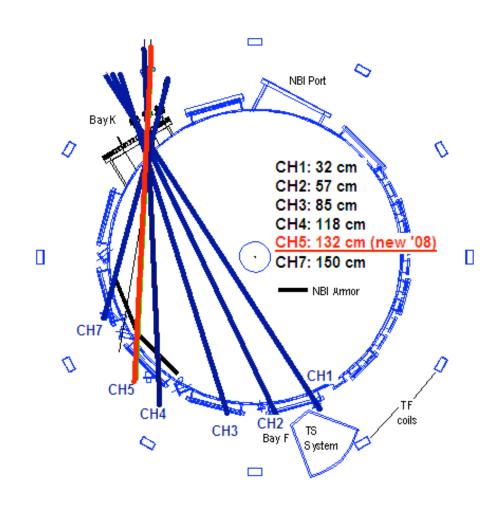
To calculate the amplitude of the MHD mode in the plasma, we divide the integrated density by this integration factor


$$\frac{\int \widetilde{n}_{measured}}{\int \widetilde{n}_{calculated}} = \frac{0.0026}{0.33} = \frac{\widetilde{B}_{\parallel}}{B} = 0.0079$$

This gives

$$\frac{\widetilde{B}_{\parallel}}{B} = \frac{\widetilde{n}_e}{n_e} = 0.0079$$

*AE mode frequency stable over 100ms time period


- Allows mode tracking over relevant time for jogs
- Bursting modes may also be trackable, but not easily automated

FIReTIP provides coarse δn_e data over entire plasma cross-section

- FIR measures permutation of k_r and k_{ϕ}
- Should easily distinguish core localized modes (GAE) from edge localized (CAE)
- Jogs will allow determination of k_r if k_ϕ is known
- Will be even more useful for reflectometer array

Initial experimental proposal

- Requires ~1 day of operation
- Develop jog scenarios
 - Optimize settling time (optimize radial position gain?)
 - Define viable range of variation
 - Create scenarios for different modes (EPMs, CAEs, GAEs, TAEs, MHD modes?) H-mode, L-mode, post-ear H-mode
- Obtain data for H-mode CAE/GAEs
- Make available to others as desired...

